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The vibrational power flow from a line circumferential cosine harmonic force
into an infinite elastic circular cylindrical shell filled with fluid is studied. To
analyze the response of the shell, an integrated numerical method along the pure
imaginary axis of the complex wavenumber domain is used. The results are
discussed for a steel shell filled with fluid and vibrating in the n=0, 1 and 2
circumferential modes. In order to evaluate the effect of the fluid, the results of
a shell filled with fluid are compared with those of a shell in vacuo.
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1. INTRODUCTION

Cylindrical shells filled with fluid are the practical elements of many types of
engineering structure such as marine craft and airplanes. Machinery-induced
vibration often occurs in these structures. In this paper, the action of the machine
on a structure is modelled as a force and the main structure is considered as an
infinite elastic circular cylindrical shell filled with fluid.

The concept of vibrational power flow analysis has been introduced in vibration
and noise control. Goyder and White [1] investigated the near and far field power
flow of infinite beans, plates and beam-stiffened plates with force and torque
excition. Pavic [2] obtained expressions for energy flow in a cylindrical shell. These
expressions were divided into three parts, two corresponding to extensional and
flexural components similar to the expressions for flat plates, with the third
concerning coupling effects which are introduced by curvature of the shell.
Williams [3] arranged the energy flow components into five terms and derived the
relationship between the energy flow in a shell and the normal acoustic intensity.
Zhang and Zhang [4, 5] studied the input and transmitted power flow of an infinite
cylindrical shell under the excitation of a line circumferential cosine force. Zhang
and White [6] studied the input power of a shell due to point force excitation.
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Experimental measurements of driving point accelerance and transfer accelerances
have also been compared with theoretical predictions and good agreement was
found in a frequency averaged sense.

In this paper, the vibrational power flow in a fluid-filled elastic shell is
studied. Perhaps due to the complexity involved in solving and interpreting the
dispersion equation, the forced excitation of this coupled system has received scant
attention. Merkulov et al. [7] have briefly studied the point-force excitation of an
infinte thin walled cylindrical shell filled with fluid, but their results are solely
concerned with the relative transfer mobility of waves with varying branch and
circumferential mode number; near field effects at the source necessary for the
calculation of the input mobility were not included. Work by Fuller and Fahy [8]
has been concerned with the solution and physical interpretation of the dispersion
equation for a cylindrical shell filled with fluid. Fuller and Fahy also calculated
the vibrational power distribution between the shell wall and fluid for free modes
of propagation. The propagation of vibrational waves through wall joint in a
fluid-filled shell has been studied by Xu et al. [9]. The results were also compared
with those of a shell with wall joint in vacuo, and the presence of the fluid was
found to increase the effects of wall joint on the wave propagation in lower
frequency.

Fuller [10] calculated the input mobility of an infinite cylindrical shell filled with
fluid. The spectral equations of motion of the shell–fluid system were employed
in the analysis and results were presented for three circumferential orders of
vibrational modes given by n=0, 1 and 2. In the paper, the spatial Fourier
transforms were used. In order to obtain the integral of the inverse transform, the
author determined poles in the complex wavenumber domain and used the
theorem of residues. The dispersion curves of this shell–fluid system are necessary
to calculate the residues. Because of the complexity of the solution and physical
interpretation of the dispersion equation for this coupled system, this method is
difficult and complex.

In this paper, a simple method is used. The spatial Fourier transforms and the
inverse transforms are used as in [10]. However, in order to avoid the solution of
the dispersion equation, the theorem of residues is not used to obtain the integral.
Instead, the result is obtained by integrating numerically along the imaginary axis
of the complex wavenumber domain. A value of damping is assigned to the shell
material in order to avoid singularities in the integrand function along the
integration path. Using this method, Fuller [11] investigated the radiation of sound
from an infinite elastic cylindrical shell excited by an internal monopole source.
Xu et al. [12] also studied the input power flow of a cylindrical shell in vacuo due
to a line force excitation by the same method. In order to verify this method, two
other methods of calculation have also been used. The results show this method
is accurate and simple.

2. FREE WAVE PROPAGATION OF THIS COUPLED SYSTEM

As the first step in the study of the forced response of the shell–fluid system,
it is necessary to consider the free vibration behavior of the coupled system. The
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cylindrical co-ordinate system employed and the modal shapes are shown in Figure
1. The vibrational motion of the shell is described by the Flügge shell equations
as given in reference [9]. The normal mode shapes assumed for the displacement
of the shell wall, associated with an axial wavenumber kns , are given by:

u= s
a

s=1

s
a

n=0

Uns cos (nu) exp(ivt+ knsx)

v= s
a

s=1

s
a

n=0

Vns sin (nu) exp(ivt+ knsx)

w= s
a

s=1

s
a

n=0

Wns cos (nu) exp(ivt+ knsx) (1)

The associated form of the pressure field in the contained fluid, which satisfies
the acoustic wave equation, is expressed as

p= s
a

s=1

s
a

n=0

Pns cos (nu)Jn (kr
sr) exp(ivt+ knsx) (2)

In equations (1) and (2), n is the circumferential modal number; subscript s denotes
a particular branch of the dispersion curves; kns and kr

s are the axial and radial
wavenumbers, respectively, related to the free wavenumber k0 by (kr

s )2 = k2
0 − k2

ns .
Substitution of these forms into the Flügge shell equations results in the equations
of motion in the terms of amplitudes of the three displacements and the acoustic
pressure.

Application of the fluid momentum equation at the shell wall, r=R, produces

Pns =[v2rf /kr
sJ'n (kr

sR)]Wns (3)

where rf is the density of the contained fluid, R is the mean radius of the shell,
and the prime denotes differentiation with respect to the argument kr

sR.
Substitution of equations (1, 2) and (3) into the shell equations results in the

equations of motion of the coupled system, represented in symmetric matrix form,

[L3×3][Uns Vns Wns ]T = [0 0 0]T (4)

Figure 1. Co-ordinate system and modal shapes.
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& l2 + a'
b'l

c'l3 + d'l

b'l
e'l2 + f'
g'l2 + h'

c'l3 + d'l
g'l2 + h'

j'+ k'l2 + l'l4 −FL'&Uns

Vns

Wns'= &000' (5)

l= knsR, a'=−(1− n)(1+K)n2/2+V2, b'= (1+ n)n/2, c'=−K,

d'= n−K(1− n)n2/2, e'=−(1− n)(1+3K)/2, f'= n2 −V2,

g'=−(3− n)Kn/2, h'= n, j'=1+K(n2 −1)2 −V2, k'=−2n2K,

l'=K, V2 = rR2v2(1− n2)/E, K= h2/12R2 (6)

where V is the non-dimensional frequency, n is the Possion’s ratio of the shell
material, h is the thickness of the shell wall, FL is the fluid loading term due to
the presence of the fluid acoustic field.

The equations governing the motion of this coupled system are different from
the in vacuo shell equations [12] by the presence of the fluid loading term, which
is given by

FL=V2(rf /rs )(h/R)−1(kr
sR)−1[Jn (kr

sR)/J'n (kr
sR)] (7)

where rs is the density of the shell material. The non-dimensional radial
wavenumber kr

sR can be written in terms of the shell non-dimensional frequency
and axial wavenumber as

(kr
sR)2 =V2(CL /Cf )2 − (knsR)2. (8)

Expansion of the determinant of the amplitude coefficient in equation (5)
provides the system characteristic equation. Due to the ‘‘non-linearity’’ of the
equation, numerical methods have to be employed to find the desired eigenvalues.
The eigenvalues will be either purely real, purely imaginary or complex, as for a
shell vibrating in vacuo. For each circumferential modal number n, the
wavenumber l can be separated into two groups. The first group contains
backward waves associated with a semi-infinite shell, −aQ xQ 0 (left side),
excited at the edge at x=0. The second group describes forward waves associated
with a semi-infinite shell, 0Q xQa (right side), excited at the edge at x=0. If
l is real or imaginary, one obtains a near field wave or a propagating wave
respectively. If l are complex in conjugate pairs, one obtains a pair of attenuated
standing waves, which means that the wave amplitudes decay in one direction but
the waves propagate in both directions.

3. INPUT POWER FLOW

To analyze the response of the system to a line force, applied around the
circumference at x=0, and specified by

p0(u, t)=F0 cos (nu)d(0) exp(ivt) (9)
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The shell displacements and applied forces as Fourier transforms are expressed as

u=1/2p g
a

−a

s
a

s=1

s
a

n=0

Uns cos (nu) exp(ivt+ knsx) dkns

v=1/2p g
a

−a

s
a

s=1

s
a

n=0

Vns sin (nu) exp(ivt+ knsx) dkns

w=1/2p g
a

−a

s
a

s=1

s
a

n=0

Wns cos (nu) exp(ivt+ knsx) dkns

p0 =1/2pF0 cos (nu) exp(ivt). (10)

Substituting equations (10) into the original equations of motion of the
fluid-filled shell [9] gives the spectral equations of motion of the forced response
of this coupled system,

& l2 + a'
b'l

c'l3 + d'l

b'l
e'l2 + f'
g'l2 + h'

c'l3 + d'l
g'l2 + h'

j'+ k'l2 + l'l4 −FL'&U� ns

V� ns

W� ns'= & 0
0

V2F0/(2prshv2)'. (11)

The solutions of this equations are

&U� ns

V� ns

W� ns'= &I11

I21

I31

I12

I22

I32

I13

I23

I33'& 0
0

V2F0/(2prshv2)'. (12)

where matrix I3×3 is the inverse of matrix L3×3. Thus the spectral radial
displacement amplitude is

W� ns =[V2F0/(2prshv2)]I33. (13)

Application of the inverse transform gives the radial displacement as

w(x/R, n, s)=
V2F0

2prshv2 g
a

−a

I33 exp(knsx) d(knsR). (14)

The radial displacement at x=0 is

wx=0 =
V2Fo

2prshv2 g
a

−a

I33 d(knsR). (15)

The input power from the driving force is

Pi =g
2p

0

1
2 Re {ivF0w*x=0} cos2 (nu) du=

hnp

2
Re {ivF0w*x=0} (16)
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where the * denotes the complex conjugate, and

hn =621 n=0
n$ 0

.

The non-dimension input power is defined as

P'i =
PiE
F2

0p

V

v
. (17)

From the theory of matrix, I33 can be written in terms of the elements of matrix
L3×3 as

I33 = (L11L22 −L12L21)/(det=L=). (18)

The integral in equation (15) must be evaluated. One way is to determine poles
in the complex wavenumber domain and use the theorem of residues, just as in
reference [10]. Because the solution of the dispersion equations for this coupled
shell–fluid system is necessary, and because of the complexity involved in solving
the dispersion equations, this method is complex.

In this paper, a simple method discussed in reference [12] is used to calculate
the integral in equation (15). This method is to integrate numerically along the
pure imaginary axis of the complex wavenumber domain. Some damping is
introduced into the shell material in order to avoid singularities in the integrand
function along the integration path. Damping is introduced into the shell material
by modifying Young’s modules E to make it more complex such that
E'=E(1− ih).

In order to obtain the integral, the upper truncation point of the integral range
has to be decided. In this paper, the value of integral in [−b, b] is compared with
that in [−0·5b, 0·5b]. If the difference is less than 1%, then b will be taken as the
upper truncation point. When the integral range is decided, it is divided into many
small integral ranges and the Gauss integral method is used in each integral range.
This method is found to provide sufficient accuracy and the value of loss factor
h has an insignificant effect on the final results.

4. RESULTS AND DISCUSSIONS

The input power is evaluated for a steel shell filled with fluid and vibrating in
the n=0, 1 and 2 circumferential modes. For comparison, the input power of an
identical shell vibrating in vacuo was studied by using two other methods (see [12]).

In order to investigate the relationship between the input power flow and the
propagating waves, the dispersion curves of this shell–fluid system are given first.

Figure 2 shows typical dispersion curves for wave propagating with a
circumferential modal order of n=0 in a shell filled with water. For the sake of
brevity, only the propagating waves (the wavenumber l is purely imaginary) are
plotted here.

It can be seen from Figure 2 that two propagating waves exist at low frequencies
(torsional motion is uncoupled and thus not plotted). The first branch, s=1, is
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Figure 2. Dispersion curves for a steel shell (only propagating waves are plotted). rs =7800 kg/m3;
E=1·92×1011 N/m2: n=0·3; h/R=0·05; ——, water-filled shell; -----, in vacuo shell; n=0.

close to that representing a fluid wave in a rigid walled tube. The second branch,
s=2, is close to that representing the in vacuo shell wave at low frequencies and
is thus largely uncoupled from the fluid. A third branch, s=3, intercept at
V=0·83. Initially this branch follows closely that of the corresponding
extensional in vacuo shell wave until at V=1·373 when it turns sharply to
approach the second rigid walled acoustic mode. Near this frequency a fourth
branch, s=4, cuts on as a fluid wave in a tube with compliant walls and then turns
into a plateau (the wavenumber l arises linearly versus frequency V) to change
its behavior to that of an extensional in vacuo shell wave largely uncoupled from
the fluid. Similarly all highly branches cut on as fluid waves and then quickly
change their behavior to that of an extensional in vacuo shell waves while the
previous construct shell-type branch converts to a fluid waves. All the plateau
parts of these propagating waves form a straight line and this line closely follows
that of the corresponding extensional in vacuo shell wave. The cut-on frequencies
of these propagating waves are V=2·15, 3·02 and 3·902.

Dispersion curves for the n=1 and higher circumferential modal numbers
exhibit behavior similar to that of n=0 apart from a few major differences. At
low frequencies for the n=1, there exists only one propagating wave which
corresponds to beam type motion of the shell. And there are two series of plateau
arising from coincidence of torsional and extensional shell waves with duct type
fluid waves. All the two series of plateau parts from two straight lines following
closely those of the corresponding torsional and extensional in vacuo shell waves.
Waves with higher circumferential modal numbers (nq 1) have dispersion
characteristics similar to those of the beam mode except that the wave has a
non-zero cut on frequency and the points of coincidence are shifted to higher
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Figure 3. The input power into a steel shell by using the method of residues. n=0.

frequencies. Dispersion curves for these higher circumferential modes are not
plotted for brevity.

In order to verify the method used in this papaer, the input power flow into a
shell for the n=0 circumferential modal number is calculated by using the method
of residues. Figure 3 shows the non-dimension power flow plotted against
non-dimension frequency V.

The results obtained by using the method described in this paper are plotted in
Figures 4, 5 and 6. From Figure 4, we can conclude that the results obtained by

Figure 4. The input power into a shell. n=0, h=0·1. ——; water-filled; -----, in vacuo.
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using the numerical intergrate method show good agreement to those obtained by
using the method of residues.

The input power for the n=0 circumferential mode shape is given in
Figure 4. The input power of the in vacuo shell has two peaks at V=1·0
and 1·0125. These are the cut-on frequency and the ring frequency, respectively.
The input power of the fluid-filled shell has peaks at V=0·83, 1·38, 3·02 and
3·9. These correspond to cut-on frequencies of higher propagation branches in
Figure 2. At very low frequencies the input power of the fluid-filled shell is very
low and close to the in vacuo result. With the increase in frequency (VQ 0·9), the
input power is still small but larger than that of the in vacuo shell. At higher
frequencies (V=1·0), when the input power of the in vacuo shell rises dramatically
to its peaks, it will be larger than the result of the fluid-filled shell. When the
frequency increases further, it will be smaller than the result of the fluid-filled shell
again. It can be seen that the contained fluid has the effect of reducing the
magnitude of the resonant response and spreading the resonance over a wider
frequency range than in vacuo. At higher frequencies (Vq 1·0), the input power
of the fluid-filled shell is close to the in vacuo result apart from peaks which
correspond to the cut on frequencies of higher propagation branches. At
frequencies near these peaks, the input power is much larger than the in vacuo
result.

The input power flow for the n=1 mode of vibration is plotted in
Figure 5. The input power of the shell in vacuo has two peaks at V=1·0 and
1·425. The input power of the fluid-filled shell has peaks at V=1·3, 1·8, 2·9
and 3·5. These frequencies correspond to the cut-on frequencies of higher
propagation branches. At low frequencies, the input power of the fluid-filled
shell is less than the in vacuo results. As there exists only one propagating

Figure 5. The input power into a shell. n=1, h=0·1. ——; water-filled; -----, in vacuo.
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branch, s=1, this branch corresponds to beam-like motion of the shell. The
major effect of the contained fluid is an increase in the mass of the system,
which leads to a reduction in shell radial response for a given force. With the increase
in frequency, near Vq 0·5, as the first fluid wave (s=2) cuts on, the
input power increases markedly as the fluid and the shell become strongly
coupled. The input power of the fluid-filled shell is larger than that in the
in vacuo results. The contained fluid again has the effect of reducing the magnitude
of the resonant response and spreading the resonance over a wider frequency
range than in vacuo. In the frequency range 0·8QVQ 1·8, the input power
of the fluid-filled shell is less than that in the in vacuo results which have
two peaks in this range. At higher frequencies, Vq 1·8, the input power is
close to that in the in vacuo results apart from peaks which correspond to
the higher propagation branches cutting on. At frequencies near these peaks,
the input power is much larger than that in the in vacuo results as in the case n=0
mode.

The input power flow for the n=2 mode of vibration is plotted in Figure 6. The
results for the nq 1 mode are similar to the n=1 mode apart from a few major
differences. Because at very low frequencies, there is no propagating wave (a
non-dimension cut-on frequency exists), so the input power flow is zero. The cut-on
frequency of the fluid-filled shell is less than that of the shell in vacuo. With the
increase in circumferential modal number n, the cut-on frequency will increase, just
as that in vacuo.

The characteristics of wave propagation in a fluid-filled shell are important and
the cut-on frequencies of the propagating waves are also important and not easy
to locate. With the method presented in this paper, we can obtain the input power
easily. Further, because the input power of the fluid-filled shell has peaks at

Figure 6. The input power into a shell. n=2, h=0·1. ——; water-filled; -----, in vacuo.
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frequencies corresponding to cut-on frequencies, we can easily obtain approximate
cut-on frequencies of this coupled system.

5. CONCLUSIONS

The input power flow from a line circumferential cosine harmonic force into a
fluid-filled shell is studied by numerical integration along the purely imaginary axis
of the complex wavenumber domain. Results are obtained for a shell vibrating in
various circumferentialmodes. For comparison, the input power of an identical shell
vibrating in vacuo is also studied. The results are discussed and the system behavior
is explained in terms of free wave propagation characteristics. The input power of
the fluid-filled shell has peaks at frequencies corresponding to cut-on frequencies of
propagation branches. Generally, when the frequencies are high and away from
these peaks, the input power is close to the in vacuo result. At frequencies near these
peaks, the input power is much larger than the in vacuo results. The results show
this method is simple and accurate. Use of this method to calculate the response of
other more complex systems is the subject of future work.
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APPENDIX: LIST OF SYMBOLS

Cf =fluid acoustic free wave speed
CL =shell extension phase speed
E=Young’s modulus

FL=fluid loading term
h=shell wall thickness
i=z−1

Jn0=Bessel function of order n
k0 = free wavenumber
kns =axial wavenumber
kr

s =radial wavenumber
n=circumferential modal number
Pi =input power flow
P'i =non-dimension input power flow
R=shell mean radius
s=branch number

u, v, w=shell displacements
Uns , Vns , Wns =shell displacement amplitudes

rf =density of fluid
rs =density of shell
n=Poisson’s ratio
v=circular frequency
V=non-dimension frequency
l=non-dimension wavenumber
h=loss factor

(*)=complex conjugate
(�)=Fourier transform


